Running head: EZP1: Software Solution

C868 — Software Capstone Project Summary

Task 2 — Section C

Capstone Proposal Project Name: Time Cutter — Workforce Management

Student Name: Jesse Anderson

EZP1: Software Solution: Time Cutter

3 AM Productions

\ Software

S/ olution
w Time Cutter: A Workforce Management System

EZP1: Software Solution: Time Cutter 3

Table of Contents

TADIE OF CONETENESeeeieiee ettt ettt e b e s bt e s at e st e et e b e e bt e sbeesaeesate et e enbeesneesanenas 3
y Y o] o] o= uToT o I DT -4 TSR PSPt 4
FAN R D LT T (o T B Lo To U s =T o | ARt 4
N I 1 T =YY T - o PPN 4
ALLL T TRE OWNEE ettt ettt ettt et sb e b et e s bt e e bt e e sabeesbeeesabeesabeeeaateesabaeesaseesabeesaseeesareeenees 4
I A I o 1B T 1= VYo Y SRR 7
I 0 T I o T =1 0 o] (oYY TSR 8

A.1.2 Class MVC Model and ERD DESIZN.....uuuiiiriiiieiiiiiieesiiieeeeiieeeeessreesssesseesssssseeesssssesesnssssesssssesenns 9
ALL 3 UIDESIZN cttttitieiiieeiiiiiee et e ettt et e e e sttt et e e e e s s st araeeeeesessasabaaaeeeesssassssbaaaeeeesssaasssseaaeeessnsansrnnns 11

B. Testing — Unit DeSIZN TESt PlaN....cccuuiiiiciiee ettt ettt e et e e et e e e s e e e s s abee e e s abeee e enareeas 15
BLL INTrOTUCTION L.ttt sttt ettt b e s bt e s bt e st e st e et e e beesbeesbeesaeesateentean 15

2 00 O U o o LY =N 15
B.1.2 OVEIVIEW ...eiiiieieiitee ettt ettt e ettt e e sttt e e ettt e s sttt e s e aub et e s s bt e e s s mbe e e s e nbeeeeembeeesenbaeesennreeesenrenas 15

B.2 TS BPIAN....ciiiiieitie ettt ettt e ettt et e s et esa b e s bt e e hte e s be e e sabeesabeeebeeesbeeenares 15
B.2.1 Timeclock for @ Task @t @ JOD ..ot 15
B.2.1 Sending User Timeclock to OWNEI/SUPEIVISOIccuveeeveeeeteeeeieeeeteeeeeeeeeteeeeteeeeteeeeteeeeevee e 16

S Y o T Yol 1 Tor- 1 { o) o USROSt 17
B4 PrOCEAUIES ...ttt sttt ettt st st e et e e bt e e bt e s bt e san e s bt e r e e b e e b e e reesreesareenneen 21
B.4.1 Timeclock for @ Task @t @JOD c..coouiriiiiiiiee e e 21
B.4.2 Sending User Timeclock to OWNEI/SUPEIVISOIcccuveeeieeeeieeeeieeeetee e eetee et e eeteeeeaeeeeereeeeanes 22

BL5 RESUIES ..ttt ettt b e s bt sh et s he e et e e bt e b e e eh e e ehe e sab e et e e bt e bt e abeenheeenteeateentean 23
B.5.1 Timeclock for @ Task @t @JOD c..coouiiiiiiiiiee e 23
B.5.2 Timeclock for @ Task @t @ JOD c..couiiiiiiiiieeee e 23

€. SOUICE COUE ..ottt ettt ettt e b e s bt st st e bt e bt e s bt e s bt e sab e e bt e bt e beesbeesaeesateenneenbeenbeesanenas 24
A compressed version of the source code can be found in the file workschedulersolution.zip 24

(Yo T oY= e U= (=1 R =L Aol <IN 25

EZP1: Software Solution: Time Cutter 4

A. Application Design

A.1 Design Document

A.1.1 Class Design

A.1.1.1 The Owner
The class diagram is representative of the early structure the application took during its planning
phase. The structure has continued to morph some beyond this initial diagram to include necessary
constructs not initially foreseen for project completion. Using these structures and relationships you can
see how the classes came together to form the program. This section showing class design directly
correlates to the early modeling of the high-fidelity wireframes. As some functions cross user types and
some are user-specific, | will cover the generic functions with the owner pages.

Job Page

Xamarin Owner Classes

Jisat Andeson | Jute 11, 2620

ApD

Owner Splashpage

+esDatabase LOCaun SIng = Empis-

Y

LoginPage

+LognButionPrassed(): woid
+SRnUpButtanFressan]]waid

Repister

+EmployeesButonPushed(y: void
+lobsButionPushed(): waid
+CakandarButionPushadl): void
+MoticeButton Pressed(): woid
+ReponButtonPushed() woid

Emplovee Page

+Create ButtonP rassedt); woid

Haotice Page

+MoticeBurionFushed(y woid
+MoticeSelected(): void

+Send TSuperButton Pushad); woid
+SEntTCews ButtonPushed(): void

v

Fapan Page

+CakendarSutionPressed(): void
+MoticeSutionPressed(): woid
+CrewsutionPressedi): void
+addCrewButionPrassed): void
+EditSutionPressedl) woid
+RemoveBulionPressed() vod
+AddBulonP rasse); void
+ListiamSakactad(): woid

+RefrashButtonPrassan)); void
+CustomarsButtonPrassed); waid
+MoliceSurionPressed) void
+TadayButtonPressad(): void
+WeekButtonPressad(); vold
+EditButionFressed(): void
+RemaueButtonPrassed(): waid
+LpdateButionPressed(): void
+addButtorPrassec); vaid
+SlartBuwInnPessed() woid
+EndButtorPrassa); void
+havigateBuriomPressed () woid
+BanaotasBution(); vaid

L]

AcdiEdit Job Page

+CalBuronFressed() void
+SaveButonPrassad); void
+RemaveBUtonPrassed(): void
+TaskButtonPressad(); woid

+RequestsButtonPushed () void
+MoticeBunonPushed(): woid
+RepomlBunonPushed(); void
+EmailButionPushed () void
+PrinButtanPushed(): waid
+inclideCheckboxClickedr) waid
+inclide CheckboxClicked(): vaid
+inclideCheckboxClicked(): void

AndiEdit Employee Page

!

Task Page

+CalButionPressedl): void
+SaveButtanPressen(): void
+RemaveBUtonPrassed(); vaid

Calendar Page

Reguesi Page

+RefreshButtonPresses); void
+addButtonPrassandy: void
+MoticeBurionPressed () woid
+EditTimasSuttonPressed(): void
+RemayeBUtionFrassed() void
+SaveButtanPrassed); void
+StartButionPressed() void
+EndButtanPrassan): vaid
+SavehotesBution(); void

¥

asndiEdit Tool Page

AodiEdit Task Page

+RequestsButtanPushed () void
+MoticeBurtonPushad(l: void
+Employs esButionPushed() woid
+JobsButitmPushedr): void
+DateSelected); void

+CakndarsutionPushad(): void
+MoticeSutionPushed(): void
+apprave BufionPushed(): void
+DenyButtenPushad]): void
+DateSelacted(); void
+ListiemSakectad(): woid

+SaveBuntonPressed]); void
+RemaveBulionPrassed(); void
+addToalPressed]); woid

+SavaButtanPrassed); void
+RemaveButinnPrassed(): waid
+addToalButtanPrassed]): void

Figure 1 Planning Xamarin Owner Classes

The application has many classes and follows the MVC (Model View Controller) model of
architecture. Under the View aspect of MVC, | developed out the classes to individually represent the
types of users who would be accessing the Database. Further, many pages that shared functions were
broken down to prevent pages from being overly complicated. For instance, the Task Page also includes
scheduling the Task, or as we would consider it, scheduling the job. So as the Task Page was developed,
it became secondary to the necessity of scheduling the job. The Task Page became part of the flow of

EZP1: Software Solution: Time Cutter 5

the scheduling that included a Scheduling Page. As the functionality changed, so then the View classes
changed to reflect the underlying Model.

The project was developed in Xamarin Forms to allow cross-platform development for Android
and Microsoft devices. The goal is to create an application that allows the users access to the database
and work information at the palm of their hands. Each platform requires some necessary changes to
provide platform-specific functionality, like navigation or calling features. 10S devices are included in the
design for future platform development but aren't included in the scope of this project as the developer
owns no |0S devices to test on.

The classes listed in the above graphic are for the ‘owner’ user, who has the greatest direct
access to information from the database. As this means additional functionality it also means greater
repeated access to the database. This created a lot of overhead from repeated database queries per
page. Another example of the changes from these early models to the current model was the breaking
up of each database query into a specific query type that would cover only the functionality included in
the Class View. For instance, if a page was for notices/messaging, it would only query the aspects of the
database necessary to provide the information for that function. Once the user switches to a different
page, the FormModel class that utilizes the class types in the ERD would only query for those pages'
needs. This way the database would be queried for all information upon login, but only update the iLists
that are directly relative to the page content the user is interacting with.

All groups of class pages have a Login Page that accesses the database and checks for matching
usernames and passwords. If the user hasn’t registered yet they can register themselves as a new
business owner or register themselves as a worker in another’s business on different individual pages.
As the user then logs in the database is accessed to return the information for that specific database.
The first login also brings the user to the profile page where they will fill in additional information
relevant to the application’s use. This page is again accessible from the first page after login in the
ellipsis at the top.

The splash page for each type of user varies slightly due to their permissions, but all splash
pages show the jobs that are their responsibility that day. The owner will see all jobs that day, but a
worker and supervisor logging in will only see jobs assigned to them that day. This page is updated every
time they visit it, so if an owner wishes to change the order of the jobs, or add or remove jobs from the
list, the employees can see the changes each visit.

The owner can access their employee’s page from the splash page where they can add an
employee or modify crew information. An employee can be on multiple crews and the crew information
is saved on the owner’s device in a SQLite database. This is because the crew information is a
programmatic solution for navigating a rapidly changing workplace structure. Employees may move
between crews throughout the day, and combinations of employees into crews may only exist when
directly related to certain jobs. For example, all employees may be on hand for a huge job at the start of
the day, before splitting into 2 groups for a large job and a medium job. Then, once the medium job is
finished, the owner may reconcile some employees over to the large job, but send a small, 2-man crew
of employees to a distance job an hour away that doesn’t require a full crew. This ability to schedule
those dynamic changes ahead of time allows the owner to foresee rapidly changing crew groups and
isn't a necessary query to add to the overhead of database use.

EZP1: Software Solution: Time Cutter 6

From the splash page, users can access the jobs page, which will display all scheduled jobs.
Supervisors and the owner will see all jobs scheduled and if they are assigned to any workers, this is
where the workers will only be able to see jobs assigned to them. There are also notes that can be
added to the database for any job to explain things relative to that job. The notes can be made by any
user type but only deleted by the owner. The owner is also able to delete a scheduled job or to edit and
add workers to it. This will open a page that shows the workers grouped by crews they are in. Employees
can be added to a job individually or with the add crew button. This will include some repetition of
worker names, as different crews may include the same workers, but it will not add an employee to a
job twice. The page also allows for phone and navigation features for Android and Microsoft devices.

Specific to the owner is the ability to access the chain of pages following the scheduled jobs
page where they can modify a job’s and customer’s information. This includes the ability to add, edit, or
remove customers. As a customer is added, the owner can add a job to that customer and choose to
import the customers' address or use a new address. This creates an unscheduled job, like a class that
hasn’t been instantiated. Instances of that job can then be created and scheduled on an individual or
reoccurring basis. Scheduling the job also allows the owner to indicate what tasks and tools will be used
that job and how much each task or tool will cost the customer for use per hour. The owner can return
to the jobs page to see the job scheduled and add workers so they can access the job and record the
hours worked.

As employees are not always available to work, and an owner has frequent requests for vacation
days, a calendar is included to allow employees to request off days, and employers to block days
scheduled to be high demand workdays. Adding this functionality with generic reasons allows
employees to have privacy in their requests, and the employer to grant or reject requests without
lengthy conversations and reminders. This calendar displays the jobs for that day and requests ‘off’ so
employees know if that date has already been requested off by another employee.

At the bottom of the splash page, and on most pages is an ellipsis, is access to the notifications
button. This allows the user to view messages sent to the crew by the owner or supervisors. This is
included so that in future development users can be notified when calendar requests are approved, they
are scheduled for a job, their work hours, a jobs’ hours and completion, or job relevant information
they’d like to pass on. Currently, the notices page only supports chat and passing work hours.

With all this information the owner also has a simple reporting function that can export to PDF
on android for email or use with external high-end business reporting software. The reporting includes
hourly income to date for specific jobs and information relating to employee attendance.

EZP1: Software Solution: Time Cutter 7

A.1.1.2 The Supervisor
The supervisor chart below is an intermediate step between a general employee and the owner.
It carries less access than the owner, not having the ability to create, modify, or delete customers or
jobs. They can access their individual profile information. It does have access to recording times for jobs
and seeing notices intended for a supervisor and owner access. They also cannot block calendar dates to
modify employees or delete scheduled jobs. The supervisor gains access to the time clock function for
them to record their hours worked.

Xamarin Supervisor Classes

Jurms Amderson | Juie 11, 2020

'

App

Splashpage

AddiEdit Jab Page

Timacock

+eDarahase LoCaton:Seng = Emplys.-

L]

LoginPage

+LogInButionPrassed(): woid
+SignlipButtanPressad])vaid

Repsiar

+Create Button® rassedi): waid

Matice Page

+hoticeBurionPushad () void
+hoticeSelected(): vaid

+Send TSuperButionPushed); void
+SeniTCewsButionPushed(l: void

v

+EmployeesButtcnPushed() waid
+labsButionPushedl): waid
+CakndarSutionPushed(): void
+MoticeButionPressed () woid
+RepomButtoniush ed () woid

+CalButtonPressed() void
+SaveButanPressem): void
+RemoveButionPrassed(); void
+TaskButhonPressan(): void

+MoticeButtionPressed () woid
+StartButonPressed) waid
+EndButionPrassen(); void
+DekteButtonPressad); void
+EditsutonFressed() woid
+DayListSelected(); void
+CakndarDhay Seleciad(); void

Job Page

Task Page

+RefreshButtonPressan); void
+CustomarsButtonPrassed(): vaid
+MoticeBurionPressed () woid
+TadayButtanPressad(): woid
+WeakButtonPressa i) woid
+EditButionFressed() void
+RemaveButtonPrassed(): waid
+UpdateButionPre ssedi): void
+addButtonPrasse]): waid
+EiartButinnFressed() void
+EndButtanPrassan): waid
+NaviateButtomPressed(y void
+EavehosButon(l; vaid

+RefreshButtonPrassed); void
+addBuitonPrassen); void
+MoticeBurionPressedi) vaid
+EditTimasButtonPressed(): woid
+RemaEBuUtonPrassed); void
+EaveButionPressed); vaid
+StetBuTtonPressed () woid
+EndButtonPrassed); void
+SavaniotesButton(); void

AddiEdit Task Page

Cakendar Page

Feques! Page

+SaveButtanPressed): void
+RemaveButionPrassed(): void
+adid ToolButtan@ rassed(): void

AdiEdit Tool Page

+RegquestsButhonPushed () void
+hoticeBunionPushad() woid
+EmgloyeesButionPushed () woid
+JobsButtionPushed(): void
+DateSelecied() void

+CakendarBuronFushady): void
+MoficeButionPushed(): void
+apprave ButtionPushed(): void
+DenyButionPushad(); void
+DateSelected(): void
+ListitamSakactad): woid

+SaveButonPressen(); vaid
+RemaveButtonPrassed(); wid
+AddToolPressad(i; void

Figure 2 Planning Xamarin Supervisor Classes

EZP1: Software Solution: Time Cutter 8

A.1.1.3 The Employee
The worker pages have the least amount of access to the database. They have a splash page that
shows jobs for the current day that have been assigned to them. The worker can access their individual
profile information as mentioned above. They can also navigate to the ‘Scheduled Jobs’ page where they
can add notes to a job. They have access to the calendar for requests and can view upcoming jobs that
the company will be working on. The employee and the supervisor can record the hours worked per task

per job. The employee can also create timeclock records and send them to the supervisors.

Xamarin Worker Classes

Jursgs Andersor | June 11, 2020

'

+LoginButionPrassed(); void
+SignlpButtanP ressad():vaid

Repisiar

+CrealeButhonPrassed(); void

Hotice Page

+hoticeBunonPushad() woid
+HoticeSelected(): void
+SendTSuperButtonPushed); void
+SenTCewsButonPushed(); waid

'

+EmgloyeesButionPushed [void
+JnbsButionFyushed(): void
+CakendarBunonFushed(): vaid
+MotficeButionPressed(}: void
+ReponButtanPushed [woid

+CalButionPressed(): void
+SaveButonPressed); void
+RemaveButonPrassed(): void
+TaskButionPressad(l: void

App Splashpage AddEdit Job Page Timechock
+os Darabase Locaton: Sing = Emply.
¥
LoginPage —

+MoticeSunonFressed() vaid
+StartBuinnFressed(): void
+EndButton® rasse): void
+Diekate ButionPressed); void
+EditSutienPressedi) void
+DayListSehected): void
+CakrdarDaySalectad]): void

Job Pege

Task Page

+RefrashButtanPrasse); void
+Cusiomars BuiionPrassed]): woid
+MoticeSutonPressed() woid
+TodayButtanPressan(): woid
+WeakButtonPressed]); void
+EditSution Fressed() void
+RemaveBLtonPrassed(): vaid
+HUpdateButionPressed(): void
+&dd Button rassen): woid
+StartBuinnFressed) void
+EndBUtonF rassen(); void
+MaviateBution Fressed () void
+SavenotasButton(): void

+RefreshButtonPrassas)); void
+iaddButtonPrassed): void
+hoticeBurionPressed () vaid
+EditTima sSuttonPressedl): waid
+RemaveButionPrassed(); void
+SaveButonPressed); void
+StertBUTtonPressed () vaid
+EndButtonPrassec(); void
+SavahlotesButton(); void

AcdfEdit Task Page

Calendar Page

REOUEs Page

+RequestsButtanPushed () vaid
+NoticeBurionFushed(): woid
+EmployeesButionPushed(): void
+JobsButionPushed): void
+DateSelacted(): woid

+CalendarButionPushed): void
+HoticeSuttonPushadl): waid
+approveButonPushed(): void
+DenyButionPushacl(); vaid
+DateSelected]): woid
+ListitemSe lectad]); void

Figure 3 Planning Xamarin Worker Classes

+SaveButtonPressed(); void
+RemaueButtonPrassed(): waid
+iddToolButtonP ressedi): void

AddiEdit Tool Page

+SaveButionPrassed(); void
+RemaveButionPrassed(); void
+addTealPressadi); void

EZP1: Software Solution: Time Cutter 9

A.1.2 Class MVC Model and ERD Design

The ERD design for the database displayed below is also an early design during the planning
phase of the application. Each database entity (table) is directly reflective of the class Model of the MVC.
The class was created to instantiate objects in the program and those objects are passed directly to the
database. As the application expanded the form held to the architecture to create additional classes in
the model for accessing the database. As the classes for accessing the database expanded, | opted to
create subclasses that would contain more complete information to display the information in the
views. While it Is possible to create an abstract object and use the objects array value to assign the
combined database queries without created the subclasses, | found it simpler for future development to
have properties that are specifically named and referenced to pass values to Listviews and other display
formats.

fares
INT PiCs are ERD [A0 T
ERD = reflectad in actually 51['1355""" L ——<] FK fablD VARCHAR{SO)
casses thatare passed ko AZLIRE and INTS
AzuraDB for Sefita. Proparty customETNOIEs VARCHAR(10}
cormverts the !
underiying wariabla e
where necassary Tash
Jad PR tashiD T —.,
PR A T } taskNams VARCHARTIS)
Custamar K custament INTEG raskPricaPar INT{10)
- fabiame VARCHARIISH FK |amployeall vaRCHAR(ID)
g
PR DT

b Sireatdddnass VARCHAR|F0)
fabCity VARCHAR{ IO}
fabSiate VARCHAR(Z)

OBZpCods VARCHART)
jabDiscount INT{}

custameriiame VAR CHAR{F0)
custamerPhone VARCHAR IO}
custamerPhones VARCHAR[IO}
CUSTIMETSIERANIess VARCRAR{0)
customenCily VARCHAR[IO

ec::;:?rjjcgfmvff:zzﬁ;?m Jab Funchon
i
customerEmail L'.III?I;H.-IH'[JIIJ| P . 10 IMT {300
amployesiD VARCHAR(I0) — ::: 3;'1":::;;] -
worker \abla Is FK laborID IKT{30) —
wsed ko identify dateSchaduled DATETIKE
| Grew et
PR IR T3 thay are an
crawiame VARCHARITS) L Warker) ~)
workerlD VARCHARIID) [B DT ' Lahar
amployEaliserNEme YARCHAR {45) Fi 1D INT{30) -+
warkerLasiNama WaRCHAR(3D) Ik wanes T N T30
emplayeaHounly INTES) FK amalin 1VTYId)
amployes Emal VARCHAR(25 tmaDaia SET DATE TIME
passward VARCHAR[20) e DataEnd DATE TIME
amployveaPhone VARCHAR(T)
srestdatress VARCHAR(TO}
clty VARCHAR{IO} Toal
shatn VARCHAR[Z] FiC a0 T
ZipCode VARCHART toalName VARCHAR(1S)
K employerEmail VARCHAR(25) toalCostPerHour INT{10}
companyiame VARCHAR(I0)
i=Superisor TINVINT(Z] FE |employeaiD VARCHAR(3D)

Figure 4 ERD (Entity Relationship Diagram)

The Employee table contains the login information for the users. It was renamed to the generic
‘worker’ since it includes the owner and employees. Using the worker table all tables are accessed based
upon the login of the owner of the company. All employees are referenced by the owner’s email. The

EZP1: Software Solution: Time Cutter 10

owner's ID is used to access the database tables where objects are created and inserted but not yet
linked to their corresponding connections that would make an outside query possible.

For instance, a tool or task may be created but not yet used at any job. The owner has a task and
has input how much the task costs but hasn’t been required to do the task at any job yet. Normalization
would require we access the task table through the connecting tables in-between since the relationship
between the employer and the task seems to be an indirect association in terms of the reasons for the
creation of the database. The purpose of the database is to define which task is used at the job. So, the
relationship normally would pass from the worker, through their labor, to the specific task. But the
argument is that there is a direct association between the owner and what services he can provide. It's
the owner’s skill set, and while not in a direct relationship to the job and customer, yet, it is a skill he can
perform that others in his field may not. This also holds, that he owns a tool, if he chooses to use it or
not. This still adheres to the first three rules of normalization.

EZP1: Software Solution: Time Cutter 11

A.1.3 Ul Design
The completed design of the software held to the initial wireframing in the registration and

splash pages with only minor changes. The following GUI pages show the high-fidelity wireframes made
during the planning phase. The users are then broken out to different areas of responsibility upon login.
Most of the responsibility of running the business remains with the owner, while the supervisors and
workers track the times they work and work on jobs. The supervisors heightened responsibility allows
them to view additional information. Messaging and calendars allow users to communicate upcoming
important dates and customer needs. Notes for customers are also included as a reference for that job
when it’s next visited.

Each page was designed with a singular feature focus. The registration page was to display the
registration function. The splash page displays the current job of the day. The jobs page changed some
to only display the scheduled jobs, and hours worked moved to the reports page. These slight changes
continued throughout development, to simplify each page, while not adding too much depth of views
for the user to have to navigate to reach their intended information.

Though each page was wireframed to allow as much simplicity in development as possible, this
goal didn’t always hold. As development began and changes were made to accommodate the required
features, complexity started developing on each page. As a single-person created project, the
methodology occasionally devolved from agile into extreme programming. Overlays were used to allow
objects to be modified or defined as additional user needs on features were discovered. The lack of
pauses, and planning/review phases that agile promotes with its iterative cycles, allowed for some scope
drift, not in features, but the simplicity of development. This isn't reflected in the Ul design itself, as the
user doesn’t see the complexity in the code, but is apparent upon code review.

Table A.1.3 GUI Pages

Log In/Sign Up

Jesse Anderson | May 10, 2020

Crew Meeting At

Employees Jahs

Calendar Notice

Figure 5 Planning Xamarin Ul Login

EZP1: Software Solution: Time Cutter 12

Owner Jobs/Tasks

Jesse Andersen | May 10, 2020

_ Navigation

buttons pressed
sends to google
maps the address

AdelEdit Je Ada/Edit Tool

taal opdavn

Ade/Edit Job

-
C— CE—
Edit Times. Remuve

Scrall bar Scroll bar
10 view all 10 view all

fields fields

Seroll bar
— 1 view all
Fave el fields

Jab when completed
is highlighted a Remove

different calor

Save Remove Add Tool Save Remove Add Tool

Task when completed = o [=]

is highlighted a
different colar

Figure 6 Planning Xamarin Ul Owner Pages 1

Owner Employee/Notice

Jesse Anderson | May 10, 2020

Add/Edit Employee Notices

Employees

Person
Person

per:
Swipe

action for

different

crews?

Notice selected

Scroll bar
to view all
fields

Send 10 Send 1o Crews
supervisar

L)

Add/Edit Empioyee Selectech

Notices Selectedh

Figure 7 Planning Xamarin Ul Owner Pages 2

EZP1: Software Solution: Time Cutter

Super Splash/JobiTask

Jesse Anderson | May 10, 2020

Crew Meeting At
7 AM - Shop

Scheduled Jobs

Total Hours To

A

Notice glows red
when an unread
notice is sent.

Navigation
buttons pressed
sends to google
maps the address

Todays Jobs

Edit Times

Save Note
A notice pops up for

change of order of
jobs and when stop

job is hit to send

notice to owner of

Tasks for

Edit Times.

Save Note

A notice pops up for
change of order of
tasks. Notice is sent
to Owner if task is

Figure 8 Planning Xamarin Ul Supervisor Pages 1

Worker Pages Jobs

completion

obs Button;‘ ;Job Selecred_}

Jesse Anderson | May 10, 2020

Notices Todays Jobs

Notice selected

Anotice pops up for
change of order of
jobs and when stop
job is hit to send
notice to Owner of
completion

Send to
supervisor

send to Owner

—Notices Button Pushed

Jobs Button

Figure 9 Planning Xamarin Ul Worker Pages 1

Jobs
Navigation

buttons pressed
sends to google
maps the address

Task Selected-

cancelled.

Tasks for

A notice pops up for
change of order of
tasks and when stop
job is hit to send
notice to supervisor of
completion

13

EZP1: Software Solution: Time Cutter

Super Splash/Cal/Notice

Jesse Anderson | May 10, 2020

Notice glows red
when an unread
notice is sent.

Supervisor Splashpage

Crew Meeting At Calendar and Availability Notices

Timeclock - |

7 Al - Shop

L

Scheduled Jobs

Start - end

Notice selected
Hours Worked
Info on date selected

Hour:

Tatal Overtime hours thi
Timeclock
tal He

Timeclock Send to crew

Send 10 Owner

Notice Button Pressed—}

Calendar Button Timeclock Button.

Figure 10 Planning Xamarin Ul Supervisor Pages 2

Worker Splash/Cal

Jesse Andersen | May 10, 2020

Worker Splashp

Welcome : CREW MEMBER Calendar and Avaflability Timeciock ’ R

Crew Meeting At
7 AM - Shop

Hours Worked

(] (-]

Figure 11 Planning Xamarin Ul Worker Pages 2

14

EZP1: Software Solution: Time Cutter 15

B. Testing — Unit Design Test Plan

B.1 Introduction

B.1.1 Purpose

As this application is comprised of many functional parts, the system testing of each component
must be completed to demonstrate functionality before delivering it to the client. If the testing fails, the
product has demonstrated it is not ready for delivery until the failures are resolved. As each function
included in the application is necessary for the workflow, each aspect must be tested. Each test will
automatically test the Azure SQL database and the API created for this application for its ability to insert,
query, modify, and delete content. Specifically, each test will be designed to test the ability of the
application to display and modify the aspect of the program. This could include, testing the ability to
register a new employee, or create a new job, or a new record of hours for a job, etc. The scope of
testing for this application is beyond the scope of this document, so only 2 tests are included that
inclusively test the other aspects of the software.

B.1.2 Overview
The development of the application in Xamarin Forms requires the testing to include both the

UWP (Microsoft Platforms) and Android platforms. The testing for Android will be done on Nougat 7.1 or
better version and as a Windows Application for Windows 10, version 1903 (10,0; Build 18362). Each
Unit Test will be performed on both devices and be a test of the platform tested. If the creation and
modification of the database information are displayed correctly the test will be considered fulfilled.
This testing is conducted manually, by the developer. Later, the developer is releasing the software on a
limited scale to a team to perform guerilla systems testing, which is not included here. The manual
testing of the application for alignment to the scope of the project is as follows.

B.2 Test 6Plan

B.2.1 Timeclock for a Task at a Job

Functions/Requirement Being Tested:
Use of the timeclock function in a specific job to clock in and out of the associated tasks and
complete the job. This includes sending the job’s timeclock to a supervisor.
Needs/Preconditions For The Test:
For the test to be conducted, the installation instructions must be followed to install the
software on both testing devices. The software must be used to create Customers, Jobs,
Employees, the job assigned to a test employee, and the jobs scheduled to be performed.
Employees must be logged in to use the time clock function for the task.
Tasks/Steps Involved:

1. The User will log into the Employee account and select the job to be tested.
The job to test will be selected and the first task will be clocked into.
The task will be clocked out of after any duration the user wishes.
The next task follows the same steps as 2 and 3 until all tasks for the job are clocked out.
The user will then send the task information with the send button to the supervisors to
inform them of task completion.
Deliverables/Expected Results:
The Owner account can navigate to the notice page and will see under the supervisor chat that
the job information has been sent.

ukwnN

EZP1: Software Solution: Time Cutter

Pass Criteria

The test will be considered a success if the correct information as reported by the employee is
listed in the messaging.

Fail Criteria

If the information passed to the messaging does not reflect what the employee sent or the
information is not present at all, the test will be considered a failure.

16

B.2.1 Sending User Timeclock to Owner/Supervisor

Functions/Requirement Being Tested:
Use of the time clock function for an employee to clock in and out. This includes sending the
timeclock to a supervisor.

Needs/Preconditions For The Test:

For the test to be conducted, the installation instructions must be followed to install the
software on both testing devices. The software must be used to create Employees. Employees
must be logged in to use the time clock function.

Tasks/Steps Involved:
1. The Employee will log in and navigate to the timeclock page.
2. The employee will use the clock in button.
3. The employee will wait an unspecified amount of time and use the clock out function.
4. The employee will click the send function to send their hours to a supervisor.

Deliverables/Expected Results:
The Owner account can navigate to the notice page and will see under the supervisor chat that
the employee information has been sent.

Pass Criteria

The test will be considered a success if the correct information as reported by the employee is
listed in the messaging.

Fail Criteria

If the information passed to the messaging does not reflect what the employee sent or the
information is not present at all, the test will be considered a failure.

EZP1: Software Solution: Time Cutter

B.3 Specifications
The images included show the code that will be tested.

Test 1: Timeclock for a Task at a Job

clockInButton Clicked(sender, EventArgs e)
(LaborClocklListView.SelectedItem !=)

selectedLaborView = LaborClockListView.SelectedItem LaborView;
{selectedLaborView.TimeDateStart ==)

selectedLabor = App.Labors.Where(u =* u.ID == selectedlLaborView.ID).FirstOrDefault();
selectedLabor. TimeDateStart = DateTime.MNow;

App.mobileService.GetTable<Labor>().UpdateAsync(selectedlabor);

FormModel. LaborAndTasksAzureDatabaseQuery();
ListViewPopulate();

(Exception ex)

Application.Current.MainPage.DisplayAlert(“Alert™, “Select a task to begin®, "0Ok.");

clockOutButton Clicked(sender, Eventirgs e)
(LaborClockListView.SelectedItem !=)

selectedlLabor = LaborClocklListView.SelectedItem LaborView;
matchedlLaborToUpdate = App.Labors.Where{u => u.ID == selectedlLabor.ID).FirstOrDefault();

matchedlLaborToUpdate.TimeDateEnd = DateTime.MNow;

App.mobileService.GetTable<Labor>().UpdateAsync(matchedLaborToUpdate);
ListViewPopulate();
(Exception ex)

Ok."};

", "Select the task to clock out.™, "0k.");

EZP1: Software Solution: Time Cutter

sendHoursButton_Clicked(
allRecordsClockedOut =
item laborViews)
(item.TimeDateEnd == &% item.TimeDateStart !=

allRecordsClockedOut =

(!allRecordsClockedOut)

.Current.MainPage.DisplayAlert("Alert

"y "0k.");

check it on.Current.MainPage.DisplayAlert("Query”, "Send noti
“| to supervisors? "ves.", "Cancel.™);
(check)

DateTime todaysDate = DateTime.Today;
min = Math.Abs(todaysDate.Ticks - laborViews[@].TimeDateStart.Value.Ticks);
Math.Abs(todaysDate.Ticks - laborViews[@].TimeDateStart.Value.Ticks);

firstlob = laborViews[@8];
lastlob = laborViews[®];

item laborviews)

h.Abs(todaysDate.Ticks - item.TimeDateStart.value.Ticks);

jobCompleted = App.Jobs.Where{u => u.ID == passedJobFunctionView.JobID}).FirstOrDefault();
datesToPass = $"Hours for {jobCompleted.JobName}. Start Time:{firstJob.TimeDateStart.Value}" +
S"IEnd Time:{lastJob.TimeDateStart.Value}”;

Message message = Message()
{
OwnerID = App.boss.ID,
SenderID = App.user.ID,
DateTimeSent = DateTime.MNow,
TextMessage = datesToPass,
ToSupervisors =

App.mobileService.GetTable<Message>().InsertAsync(message);
Nawvigation.PopAsync();

ception ex)

Application.Current.MainPage.DisplayAlert(”

Figure 12 CS. for tracking hours at a job

EZP1: Software Solution: Time Cutter

Task 2: Sending User Timeclock to Owner/Supervisor

clockInButton Clicked(sender, EventArgs e)
weClockRecord timeClockRecord = TimeClockRecord()

OwnerID = App.boss.ID,
EmployeeID = App.user.ID,
ClockedIn = DateTime.Now

App.mobileService.GetTable<TimeClockRecord>().InsertAsync({timeClockRecord);
App.timeClockRecords.Add(timeClockRecord);

TimeClockListViewPopulate();
timeClockInstanceActive =
(Exception ex)

Ok.");

clockOutButton Clicked(sender, EventArgs e)
(TimeClockListView.SelectedItem != I,

selectedRecord = TimeClockListView.SelectedItem TimeClockRecord;
matchedRecordToUpdate = App.timeClockRecords.Where(u =» u.ID == selectedRecord.ID}.FirstOrDefault();

matchedRecordToUpdate.ClockedOut = DateTime.Now;

App.mobileService.GetTable<TimeClockRecord>().UpdateAsync (matchedRecordToUpdate);
TimeClockListViewPopulate();
(Exception ex)

Application.Current.MainPage.DisplayAlert("Error™, $"{ex}", "0k.™);

}

timeClockInstanceActive =

$"select the record to clock out.”

EZP1: Software Solution: Time Cutter 20

ndHoursButton_Clicked(

dRecord = TimeClock
tEndDateToPas

App.mobileService.GetTabl

PR
an ex)

n.Current.MainPage.Display

Figure 13 CS. for tracking hours of an employee

EZP1: Software Solution: Time Cutter 21

B.4 Procedures
Though the tests are similar, they use two different classes, model classes, and tables in the
Azure Database. Being the main purpose of the application, to record times and share them via the
cloud database. The first test requires the user to have set up at least one employee, at least one
customer, and job and scheduled a job with at least one task. The second task only requires the creation
of an employee.

L The'Warbeok LWT

The errors will be displayed in the application from try/catch
statements, or if the information isn't logged in the application in the
notice section of the application. After executing each test, the
results can be easily and quickly recorded. Testing of these functions,
in general, has occurred throughout development, but system testing
of these individual functional units is required evidence of the
functionality of the primary scope of the application.

L2 The'Wartho o UWT

T 8 B.4.1 Timeclock for a Task at a
Job :
Joks scheduled 1 From the ‘scheduled jobs’ £ M BF14/2020 B52:11 P
page, the user will navigate to the
S job scheduling page by clicking on
DE/14 Jokis scheduled: 1 the ‘Job Times’ button. Once
W”—M'ﬂ there they will view the tool(s) € Theadbeck WP
P o o that was created for the
scheduled job. The user can
then select a task and click on
the ‘New Clock In” button.

Stare Tima

Jobis scheduled: 1

Stare Tima

TestTool

Once the job is clocked in the
job will then display a new
clock in time. The same occurs
with the clock out time on the
task selected. Once all tasks are Query
completed the ‘Send Hours’ Send notice of completed job 1o superdsors?
button will open a confirmation.
The approved confirmation will
send the hours to the

e, Carel,

supervisors.

Figure 14 Ul during test for task timekeeping

EZP1: Software Solution: Time Cutter 22

B.4.2 Sending User Timeclock to Owner/Supervisor

From the ‘splash page’, the user will navigate using
the ‘Timeclock Button’ to the ‘Timeclock’ page. The user can
then select ‘New Clock In’ to create a newly scheduled event.
The user can select when to clock out of that event with the
‘Clock Out’ button at whatever is the desired workday
interval. Once the user has selected which record they would
like to send, and the user has been clocked out on that
scheduled date, the user can click the ‘Send Hours’
button to open a query to send their hours.

£ The'arbeok UWT

L The'Warhe ok LWT

A new query will appear to confirm sending End Thna
the hours to the supervisors or owners, and upon
confirmation will send the hours.

& The'tarbook VWP

Start Thme End Thme

B 170020 BS300 P 1820 0 &S00 P

L3 The'Wartherh UWT

Query

Serwd this selection o supsrvisces?

Figure 15 Ul during test for employee
timekeeping

EZP1: Software Solution: Time Cutter

B.5 Results

Hours fiar TestCust House, Start Time:6,/14/2020

23

B.5.1 Timeclock for a Task at a Job

The results for the first test for recording the hours in a
task and sending those hours to the supervisor or owner is
recorded here as a success. The hours correspond to the hours

B:5274 P Encl Timedt 14/ 2020 6:52704 FM recorded in for the job and are displayed under the

06/14/2030

Supervivar All Warksss

B.5.2 Timeclock for a Task at a Job

The results for the second test for recording the hours of an
employee and sending them to the supervisors or owners are
recorded here as a success. The hours correspond to the hours
recorded for the employee on the ‘Timeclock’ page and is displayed
here on the ‘Notice’ page under the supervisor’s tab.

supervisor’s tab on the ‘Notice’ page.

Mty howrs. SEard Timesf 14035020 6:53:00 PA Erd
Timnes B4/ 3020 52305 P
O 14,2020

TEs1Es]
Howrs far TestOust House. Start Time:6, 1472030
A:52904 PRA Enad Timseg M 1405020 5:53:04 P

00147200

Supsrvisars Al Warkers

Figure 16 Successful test images

EZP1: Software Solution: Time Cutter 24

C. Source Code

A compressed version of the source code can be found in the file workschedulersolution.zip

EZP1: Software Solution: Time Cutter 25

|. Sources and References

Wingen, Malte (Photographer). (2018, November 18). Retrieved from
https://unsplash.com/photos/85XLV4Po2mk

Borba, Jonathan (Photographer) (2020, April 28) Retrieved from
https://unsplash.com/photos/vLnmmRg6bMY

Maria, Orlova (Photographer) (2019, February 5) Retrieved from
https://unsplash.com/photos/LURFzgHGIA4

Birkett, Adam (Photographer) (2017, August 15) Retrieved from
https://unsplash.com/photos/TLomZTHslqg

https://unsplash.com/photos/85XLV4Po2mk
https://unsplash.com/photos/vLnmmRq6bMY
https://unsplash.com/photos/LuRFzqHGiA4
https://unsplash.com/photos/TLomZTHsIqg

